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ABSTRACT

By perturbing properly a linear program to a separable quadratic program

it is possible to solve the latter in its dual variable space by iterative

techniques such as sparsity-preserving SOR (successive overrelaxations). In

this way large sparse linear programs can be handled.

In this paper-we give a new computational criterion to check whether the

solution of the perturbed quadratic programs provide the least 2-norm solution

of the original linear program. This criterion improves on the criterion

proposed in an earlier paper.

We also describe- an algorithm for solving linear programs which is based

on the SOR methods. The main property of this algorithm is that, under mild

assumptions, it finds the least 2-norm solution of a linear program In a

finite number of iterations.
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SIGNIFICANCE AND EXPLANATION

This paper provides the theory and practical algorithms for computing the

unique smallest solution of a given linear program. The proposed -ethod is

capable of handling very large sparse linear programs that cannot be solved by

the conventional simplex method.
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A FINITE ALGORITHM FOR THE LEAST TWO-NORM SOLUTION

OF A LINEAR PROGRAM

Stefano Lucidi*

I. INTRODUCTION

It was shown in [1] and [2j that the least 2-norm solution of a linear

program can be computed by "properly" perturbing the linear program to a

separable quadratic program and by solving the latter in its dual variable by

iterative techniques such as SOR methods (see [3]). In this way large sparse

linear programs, not solvable by standard pivotal methods can be handled (see

[41, [1]). The main difficulty with this approach is that, until now, there

is no easy way to know "a priori" if the perturbed quadratic problems is a

"proper" perturbation of the original linear program.

In order to overcome this difficulty a computational criterion to check

whether the solutions of the perturbed quadratic program was given in [5] and

two algorithms where the perturbation parameter of the linear program is

decreased during the computational procedure were proposed in [6] and (5].

We give now an outline of the paper. Section 2 contains the problem

formulation. In Section 3 we characterize the least 2-norm solution of a

linear program in terms of the constraints which are active at that point.

This characterization will be utilized in subsequent sections of the paper.

In Section 4 we turn our attention to the problem of the perturbation of a

linear program and we propone a new criterion to check whether the solution of

the perturbed problem is in fact the least 2-norm solution of the linear

Permanent address: Istituto di Analisi dei Sistemi ed Informatica, National
Research Council, Rome, Italy.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
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program. This criterion improves on that given in [5). In the last section

we describe an algorithm for solving linear programs which is based on the SOR

method. The main property of this algorithm is that, under mild assumptions,

it finds the least 2-norm solution of a linear program in a finite number of

iterations.

We briefly describe the notation used. All the matrices and vectors are

real. For the n x n matrix A we denote row i by Ail column j by A.

and the element in row i and column j by Aij. For x in the real n-

dimensional Euclidean space Rn , xi denotes element i for i = ,,...,n

and x+ denotes the vector with components (x+)i = max{xi,0} i = 1,...,n.

All vectors are column vectors unless transposed by T. We will denote the 2-
T % =(n 2'/2

norm, (xx = I Xj) by lx, while R will denote the nonnegative
J=,

orthant {x : xERn, x 01. For a point c in Rn and a closed set X in

Rn the 2-norm projection P2(cX) of the point c on X is defined

Ic - p2 (c,X)l = minic-x .

xe X

For given index sets I, J we denote, as usual

III = number of indices in I

I-J= fi : icI, iEj)

I\ (i . cl, 1/J}

and 0111 will be a null vector of dimension III. Finally we denote the

identity matrix by E, AI will be the submatrix of A with rows Ai i C I,

A I the submatrix of A with elements Aij, i e I, j e J and xI will

denote xi, i C I.

-2-
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2. PROBLEM FORMULATION

We consider the linear program

T
Max c x

s.t. Ax < b (1)

x) 0

where A R c n , b c Rm  and X = fx : Ax~h, x)01 0 0. Let X denote

the (possibly empty) optimal solution set of (1). The least 2-norm solution

of (1), P2(0,X), can be characterized as the unique solution of the

following problem

Kin xl 2

s.t. Ax C b
(2)

x 0

cx) p

where p is the maximum value of (1).

Given any x c X, u e Rm  and v c Rn we define the following index

sets:

Ia(x) a = {i : Aix = b i  , J a(x) - i : x i = 01

I(x) : i : Aix < h , Jn(X) {i : x i > 01

I d(u) := i : ui > 0} , J3 (v) := i : v i > 0)

Let Ib(x) and Jb(x) denote two index sets such that:

i) Ib(x) -C Ia(x), Jb(x) - Ja(x).

T ad T
ii) The vectors Ai, i C Ib(x) and Ej, i C Jb(x) (where Ei is the

i-th row of the identity matrix) are linearly independent.

iii) All the vectors AT, i C Ia(X)\Ib(x) and T1, i C Ja(x)\Jb(x) are
linear combinations of vectors Ai, i 4 T b(x) and ET, i C blx)-

-3-
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Furthermore we introduce the matrix B(x) C R&(d and the vectors q(x),

s(x) cR where d - IIb(x)t + Ijb(x)I, as follows:

B(x) :=,q(x) : s (x) :=(B(x)B(x) T q(x)

REMARK 1. From iii) it follows that:

Vi C la (x)\Ib(x) there exists a Rd such that

T - d -

ViC Ja(x)\J (x) there exists a z c Rd such that

a b- it

E = B(x) z ~)zi= 0

-4-



3. PROPERTIES OF THE LEAST 2-NORM SOLUTION OF A LINEAR PROGRAM

In this section we show some elementary but important properties for the

least 2-norm solution of a linear program.

PROPOSITION 1. Let x be a solution of the linear program (1) and (u,v) be

a solution of its dual. Then the following statements hold:

a) If x = p2 (
0,x) then x is also the least 2-norm solution of the

following system of equations

B(x)x - q(x) (4)

- T (B- B( -T)- I'_B7T
that is x = B(x)T(B(x)B(x) )-q(x) - B(x)Ts(x)

- -T T- -- -I
b) If x = B(x) (B(x)B(x) q(x) + Kc, for some K c R, and

S(x) ( 0, s(x) ) 0 if follows that x - P 2 (0,X).

Ib (x)\ Id (u) Jb (x)\Jd(v)

c) Moreover, if the gradients of active constraints are linearly independent

at x then

x - B (x)(B(x)B(x) ) q(x)

s(x) ( 0 s(x) 0 < .... > < "  p 2 (0x)>
Ib(x) \ Id (") Jb (x)\Jd()

PROOF. First of all we set

Ia : 1a(x), J a : Ja( )' In : In(X) Jn :- Jn(x) ' Id := Id(u), Jd : Jd( v)

I b " (x) , Jb :" Jb(x), B :- B(x), q :- q(x), s :- 3(x) .

a) We prove this part by contradiction. Suppose that ixists ;, with

x # x, which is the least 2-norm solution of (4). Then all the points

x(8) = 8x + (1-0)x, Ve C R, solve (4) and from the maximum principle it

follows

;T (x (e - 0 (5)

By taking into account Remark I we have

-5-



a bvi i a \j x 1 0) Z- i x~e) z q 0

vi C Ia\Ib  A ix(e) = ;.TBx() = q = bi

Hence Xja (0) = 0, AIa x(O) = bia, Y8 c R. Since xj > 0 and
n

Anx < b there exists a value 8 c (0,1) such that xj (8) ) 0,
n nn

AI x(8) 4 . Therefore x(O) c X and it is, also, an optimal point for
n n

(1): in fact from the KKT conditions for (1) it follows:
T- T T-T-

c Tx(e) = cT x(T)j = u AT j x()I = uT b I  - C x
J IJ J I

n n a a n n a a

Hence we can conclude that x(O) is feasible for problem (2). Now, by

applying the maximum principle to problem (2) we obtain
_ --

(x( ) -x ) > 0

Furthermore by (5) we have

0 < (x(e) - X) = x (x + (1-)-x - X)

(xx _I;2) = - (;2 -2 0

Therefore x is the least 2-norm solution of (3) that is (see [71)

- T' T-I T
X= B(BB) q B s

b) By assumption we have

- T T T T

x = R s + Kc A i i + AI\i 'I\I + r ij j S j dj

Vbd sbdI b d b d b d b d
(6)

+ E T  +Kc ,
Sb\jd b \, d

and sIb\Id ( 0, sJb\jd > 0.

From the KXT condition for (1) it follows
+ T U - ET ) = 0 V' £ R (7)

-6-
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Now, by adding (6 and (7), we obtain

T -- T_ T T

~ET -- +9 ET --

b~ad b jd +81b , d Ejd b Y djb -Eibjd s b \jd 0

If we choose a y > 0 such that

y+K > 0, yvj d + s b )  0 -sbd d, bund ibdi

and we set

d- s! id Uia\b := ma \ I , U\ -s d

V~bj :v bC d +8SjtU , V,\Jb 7~ \  * 'Vb J  b\ j
JnJ YYjv j* *

bd bd bd ab ab b b ,d i d

Y* - iU =0 * : 0
n n

we have that (x,y*,u*,v*) satisfy the KKT conditions for (2).

c) (==>) It follows from part b)

(<==) By the assumption that the gradients of the active const.=ints are

linearly independent at x we have

Ia =Ib 0 Ja = Jb "

From part a) it follows

- T T T T T
x =B AId d + A a\Id Ia \Id + EJd S d + E a\jd Sa \jd

Now x solve also problem (2) and, hence, there exists u* > 0, v* 0 0, y* 0 Q

such that (x,y*,u*,v*) satisfy the KKT conditions for (2), namely:

x A I-u ) + E v. c
a a a a

but by using the KT condition for (1), that is

T - T
c AI

d d d d

-7-



we obtain

- T T .V Y-

d d (Yuad 
+ ii-d ad - iVd

+ E
a V* ad

Then, by assumption, we have that the columns of B(x) are linearly

independent and, hence, there must exist only one vector y such that:
- - )T.

x = B(x) y. Therefore, from (8) and (9) we obtain

S Y - U* , s Vd - YVJ
Id d d d d d

T b\1d Ia\Id a \ld

jbd a\jd Iad\jd

and these last two inequalities complete the proof of part c).

We are now ready to establish a criterion for determining when the

solution of the perturbed linear program is indeed the least 2-norm solution

of the unperturbed linear program.

-8-



4. PERTURBATION OF LINEAR PROGRAMS

In (1], (2] it was shown that the least 2-norm solution of the linear

program (1) can be obtained by solving a "proper" quadratic perturbation of

the linear progra,-. In particular we have the following important result.

THEOREM 1. Let the linear program (1) feasible. Then

a) i) <X A 0> => <1 * > 0 : P 2 (eX) = p 2 (0,X) for all £ c (0,c*]>

X 0

<== <3 C* > 0, x* p P-,X) : x* for all e c (0,E]
i x) P 2 (0,X))

T c +
b) sup c x = <==> p2 ([-,X)I + - as e + 0

xCX

PROOF. See [21.

c

We can note that p (-,X) is also a solution of the problem

£T T2 2
Min x Cx - C Tx

(11)

s.t. Ax ( b
x> 0

and that the quadratic programming dual (see [81) to (11) is

i 1ATu _ v _ cp2 + CbTuMin- u--t +b
2 (12)

s.t. (u,v) > 0

where the primal and dual variable x and (u,v) are related by

1 (_T
x -(-AU + v + C) (13)

Until now there was no simple way of determining "a priori" the parameter e*

of Theorem 1. The next result which gives on "a posteriori" computational

scheme for C* shows why it is difficult to compute e* "a priori". In fact

-9-



we can note that C* depends strictly on the least 2-norm solution of (1) (by

means of the vector s(x), defined by (3)) and on the optimal solution of the

dual of the linear program (1).

PROPOSITION 2. Assume X 0 0. Let the gradients of the active constraintu be

linearly independent at x = P2 (0,X) and let (u*,v*) be the solution point

of the dual of the linear program (1). Then it follows that
JLc -

2 (COX) - x - P 2(0,X) V (0,e*]

where c* is given by

n= n u*,/s(X)i], [ min-
ie{icIdlU.),S(x' ic{iJd (Vi),slx)i<0}

(14)

where s(x) is defined by (3) and Id(u*) = {i : ut > 01 and Jd(v*) =

fi : v* > 0).

PROOF. We recall the definitions given in Section 2 and we set 1a : Ia(x),

Ja : a (x ), In : I n(x), Jn :- Jn(x), 'd 1= Id(u*)' Jd :- Jd(v*) ' s : s(x).

Now, from the KKT conditions for (1) we have

-c + ATu * - ETv * = 0 • (15)

Id Id id Jd

By using part c) of Proposition 1 we obtain

- aI - I d ES - E \= 0 (16)

where sia\i d  0 and SJa\jd 1 0.

Hence, by adding (15) and (16), we obtain

c + A(U - 'd + A I d\ - (Vd + s - = 0

-10-
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If we choose e* as the largest value of e such that

u* - S 0 , V *d + Es > 0

Id Id d id

(that is if E* is given by (14)) we can define V c c (0,£*]

u(e) = - s, u(u( := , u(C) 0 , (17)

Id Id d ( ad IaId' n

:() v* + esi , v(C)~ VWs~~ , 0 , (18)
Sd d d a jd a-i jdn

Then it turns out that (xu(c),v(c)) is the unique solution of the KKT

conditions for problem (11), V e c (0,*].

Therefore we have that

x = P(0,X) = p2
(-,X) V C C (0,*]

and that (u(c),v(c)) is the unique optimal solution of the dual problem

(12).

U

In order to overcome the inherent difficulty of determining e*,

"a priori" a practical computational criterion was proposed in [5] to check

whether the solutions of the perturbed quadratic programs provide the least 2-

norm solution of the original linear program. This criterion required two

points (xi,ui,vi), i - 1,2, that satisfy the KKT conditions for problem (11)

with two different values for e.

In the sequel we give an improved new criterion that requires only one

point (x,u,v) which satisfies the KKT conditions for problem (11). However

this new criterion requires a matrix inversion. By contrast, no matrix

inversion was required in (5].

In the next theorem we make use of the index sets I (x), Ja(x), In(x),

3n(X), Ib(x), Jb(x), Id(u), Jd(v), the matrix B(x), and the vectors

q(x) and s(x) which were defined in section 2. Furthermore we assume that

-11-



Sa(x) U a(x) p P where x is the solution of (11), because otherwise we

have trivially that x P 2 (O,X).

THEOREM 2. Let x be a solution of problem (11), that is x = p2(,X), let

(uv) be a solution of the dual problem (12) and let e* be the optimal

value for e given by (14). Then

a)
u _)-es(x) _,v > Cs(x) _0

I (x) Ibx Jb) Jb€ -

[E-BT (x)(B(x)B(x)T)-IB(x)]c - yc

for some y < 1

and (u*,v*) are optimal for the dual of the linear program (1) where

+ Cs() _) u
Ib(x) Ib(x) Ia(x)\Ib(X)

U - 1U U* Y 0

1b (x) 1(x)\Zt(x) Zn(x)

(19)

(VCs(x) ) v - -

Jb(x) 3b(x) JalX\ b(x)
V* Ym V* -= V* - 0

Jb(X" 1 a(X)\JO(x )  1-yJn(x )

(20)

b) If the gradients of the active constraints are linearly independent at x,

then it follows that:

u ) -Cs(x) _,v > es(x)
Ia(x) Is(x) Ja(x) J(aW 0 < e 4 C*

T T I<==>

[E-B (x)(B(x)B(x) )-B(x)]c - 0 x= p2 (CX) - P2(0

-12-
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and, if x - P2(0,X), the optimal solution (u*,v*) of the dual of the

linear program (1) is given by (19) and (20) with y -0, Ia(C) W Ib(x) and

a x) = Jb(x)

c) If the gradients of the active constraints are linearly independent at x

and the strict complementarity holds for the linear program (1) at the least

2-norm solution P2 (0,X), then it follows that:

> >-Cs(x) _ v > >s(x)x0
7 Ia(x) Ia(x) Ja(x) Ja(x) 0 < C 4 C*

E-B (i)(B( )B(x) T B()flc 0 = p2 (a,X) = p2 (0,i)

PROOF. hgain we set la : Ia(x) J a := J a(x), I := I n(X), Jn : J n (x),

:=I b(b), Jb b:- J(x), Td :- d(u), Jd := Jd(V), a := B(x), q :q(x),

s := s(x).

a) Define

y := Cx-C

Since the point (x,u,v) satisfies the KiT condition for problem (11), the

point (y,u,v) satisfies the KKT conditions of the following problem

MI .'Y 2Min .1 1 yi

Ay C eb - Ac (21)

y) -c•

Therefore y is the optimal solution of (21).

By repeating the same steps of the proof of part a) of Proposition I we

have that y is the least 2-norm solution of the following system of

equations

-13-
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By C q - Bc . (22)

In fact, suppost not. Ten there exists a -, y y, which is the least norm

solution of (22). Then V8 the points y(8) 8 + (1-8)y solve (22) and

(recalling Remark 1)

Ci a\jb  yi(e) - z iBy(O) = z i(q-8c) - -c i

Vi C I a\ib hye - zBy(e) - z(Eq-Bc) -Lbi-Aic

Moreover, since yj > -c3  and AI y < ebI  -A I c, there exists a value
nf n n n n

0 c (0,1) such that y(O)j ) -cj and AI y(O) < eb - AI c. Therefore
n n n n n

y(e) - {y' : Ay' < Cb-Ac, y' ) -c).

Now, by applying again the maximum principle, we obtain

0 < y (y(W)_-) -( T -, ,2) = e(,',2 - ,y, 2 ) < 0

Hence we can conclude that y is the least norm solution of (22), namely

- T T-I
y u B (BE) [eq-8c]

from which

[E - B T(BBT)T B]c + B T(BB T q

(3 - 3 T(BBT 1IB]c + SBT .

Now by recalling the MKT conditions for (11) we have

T - o
Cx- c + A, u, - =viW

a a a a

from which we obtain

TT-- TTT

,E - 9T(BB) B]c + B - c + AI u - E v 0
a a a a

T T)- T- T -
[Z - B (BT)-Bc - c +A (u +s + A I \UI \Ib

Ib b T b - a ba b

- - E.,J\JbVJ\Jba a 0•
Bb (b ab a b a b

-14-
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By assumptions we have [E - BT(BBT) IB] y yc with some y < 1

u I+es 0, - SJb 0ub Sb vb b

Therefore if we set

u b + T UIa\I b
u*1 -i : a b , u = 0u :b I -V Y I* I - Y

b abn

vJb - Cs b VJb\jba

vJb  
bI - Y , a 1 1 1

we have that (x,u*,v*) satisfy the KKT conditions for the linear program

(1).

b) (-=>) The proof of this implication follows directly from part a).

(<-) By using the KKT conditions for linear program (1) we know that

there exist (u,v) such that

-C +I A T  TI T

a a a a

from which

c T Ja

u 
a

Therefore we have

[E-B T(BB T) B]c - [E-B T(BBT)- IB]B Y a) = 0

Now, by repeating the same steps of proof of Proposition 2 and by using (17)

and (18) we obtain that

u I  ) -Cs1  , vj )Csj
a a a a

-15-
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c) The proof of part c) follows from the proof of part b) and the proof of

Proposition 2 (see (17) and (18)).

REMARK 2. Part b) of Theorem 2 characterizes the solvability of a linear

program in terms of the solvability of a convex quadratic function minimiza-

tion on the non negative orthant (problem (12)) without any "a priori"

assumptions regarding the solvability of the linear program (I).

We now turn our attention to computational procedures for determining the

least 2-norm solution of a linear program.

-16-!A



5. AN ALGORITHM WITH FINITE TERMINATION FOR LINEAR PROGRAMMING

The quadratic programming problem (12) can be solved by using a sparsity-

preserving SOR algorithm introduced in 141. %ore specifically we have the

following algorithm where we have assumed that Aj ' 0, Vj

LPSOR Algorithm

Choose (u0 ,v0) 1 R+f n , (0,2) and e > 0.

Having (uk ,v k) compute (uk+,vk+1) as follows:

k (uk (A (NT (AT) tu k + m (AT)uk k c

j NA 12 1 2 t=-c)

j>1

k 1
vk+1 (vk Tuk+ l + vk + C))

v (k- w(-Au + +

The principal and computationally-distinguishing features of this SOR

algorithm are that it preserves the sparsity structure of the problem and

require only simple operations, and, hence, very large problems can be

tackled.

We refer to (2] and [4] for a more complete description of sparsity-

preserving SOR algorithm, here we only recall the following convergence result

for the LPSOR Algorithm

PROPOSITION 3. Assume that X 16 O and that the gradients of the active

constraints of the linear program (1) at the optimal point x - p2 (0,X) are

linearly independent. Let {(uk,vk)) be the sequente generated by the LPSOR

hlgorithm. Then

a) There exists a real positive number C* such that for each £ c (0,e*],

the sequence {(uk,vk)} converges to a point (u(e),v(c)) which solves

problem (12) and the corresponding x(e) determirned by (13) is independent of

-17-
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and x(e) = x = P 2 (OX).

b) Moreover, if strict complementarity holds for problem (1) at the least 2-

norm solution x - P2 (0,X), then there exists a real positive number e*,

E** 4 e*, such that for each e c (0,c**] there exists a k* such that for

all k > k* the following hold:

ki : u 01 {i : u! > 01 = Ia (x)

k
{i : ui = 0 = {i : Ut - 01 = I (X)

k

{i : vi> 0) {i : vt> 01 -ia W)

fi : vi = 01 = {i : vt = 01 = Jn (x)

where (u*,v*) is the optimal solution of the dual of the linear program (1).

(Ia(x),In(x),Ja(X),Jn(x) were defined in section 2.)

PROOF. See [5].

In applying part i) of Proposition 2 we must be able to select a value of

c such that e < c*. In order to ensure that e 4 c* we may have to choose

very small values for c yield a very slow convergence of the LPSOR Algorithm

when applied to the problem (12).

In order to overcome both the lack of a practical "a priori" selection

procedure for the parameter £* and the need to solve problem (12) exactly

many times for a decreasing sequence of C values (until one of the criteria

of Theorem 2, Corollary I or Theorem 2 of [5] is satisfied) we propone an

algorithm which is based on the results of the preceding sections

The key idea of this algorithm is similar to that of the algorithms

proposed in [51, [6], where problem (12) is solved only approximately after

which E is decreased in a prescribed manner.

- 8-
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The main distinguishing property of the present algorithm is that, under

mild assumptions, it finds the least 2-norm solution of the linear program (1)

in a finite number of iterations. The algorithm described below makes use of

two preselected sequences {fk }  and {Nk}  such that

li ek = 0 and limak-+ . (23)
k- k-

ALGORITHM I
Choose (u0,v0 ) E +n aving (-,vk-1), (,v k ) is obtained by

v + ,v Havin (luv

kpplying Nk iterations of the SOR algorithm to the problem (12) with

C - Ck and by using (uk-I,vk-i) as a starting point.

THEOREM 3. Assume that:

a) The linear program (1) is solvable.

b) The gradients of the active constraints are linearly independent at the

optimal point x - p2(0,X).

c) The strict complementarity holds for the linear program (1) at the optimal

point x - p2 (0,X).

Let {uk,vk} be the sequence produced by the algorithm and let

k"= {i : i > 01 , J := {i :vk > 01 , :W (24)

Then there exist a i such that for all k > k it follows that the matrix

Bk has full rank and

x: (B k)Tk - p 2 (0'X)

where

-19-
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sk -- k(Bk)Ti-1 (25)
Lb k

PROOF. By using Proposition 3 we have that there exist a E** and a k*

such that V C c (O,E**] and V k > k* we have (by recalling the definitions

given in section 2)

kkk i(X)-.Ib(X), jk J(X) .- X

a W -Ibx) -j a W j b(x)

and, hence
3 k (- k -

Bk = x), s =s(x)

Therefore, there exists a k large enough such that c £** and N > k*

and, hence, the proof of theorem follows from part a) of Proposition I.

RF-MARK 3. Practically we do not need to compute the matrix (Bk(Bk)T)- I1 we

only have to solve the system

(B k(B) )s = kI
{b k

Therefore any efficient sparsity preserving method fc, solving linear systems

of equations can be used.

THEOREM 4. Assume that:

a) The linear program (1) has a unique solution x.

b) The gradients of the active constraints are linearly independent at the

optimal point x.

Let {uk,vkl be the sequence produced by the algorithm and let

-20-
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Ik u k > Q ,. {i : vk >

(26)
jk= u - 01. k= {i : v= O} •

Then there exist a k such that for all k ) k the matr.A A is a

square non singular matrix and

k -1 -
x : (A k) b k

PROOF. By the assumptions a) and b) we have that the linear program (4) and

its dual have unique optimal solutions and that the strict complementarity

holds (see page 26 of [11]). Now, by using again Proposition 3 we have that

there exist a C** and k* such that V C C (0,c**] and V k ) k* we have

Ik I a = (x) I k J a(a (x) - Jb W j d(u)

yk I Cx) {i = 01, 3k... x n ( W - {i = vo}. 0

where (u,v) is the optimal solution of the dual of the linear program (1).

Therefore for values of k large enough (such that Ek < E* and

Nk > k*) the proof of theorem follows by using usual arguments of the duality

theory for linear programs (see [11], page 45).

a

In Algorithm I different stopping criterions can be used. As examples we

propone two algorithms. In Algorithm II the stopping criterion is based on

Theorem 2 and Theorem 3 and it uses the properties of the multiplier function

X(x) for the linear program (1) (we refer to [9) and [11] for the definition

and the properties of the multiplier function X(x), here we recall only that

X(-) is a function from Rn to Rm+n such that if x is optimal for the

Inear program (1) X(x) gives the optimal solution of the dual of the linear

program).

-21-
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Algorithm III is based on Theorem 4 and the duality theory for the linear

programs.

Again Algorithm II and Algorithm III make use of the preselected

sequences {ekI and {Nk}  such that (23) holds and the sequence

{Ik, (j k}, {1k, {j, {Bk} and (sk I given by (24), (25) and (26).

ALGORITNM II

Data: (u0,v 0 ) E K+f n

Step 0: Set k= I.

kkStep 1: Compute (uk ,v ) by applying Nk iterations of the SOR algorithm

= k an yuig (k-i k-ito the problem (12) with cEk and by using (u-v as

starting point.

Step 2: If has full rank, u k k -c k k S k [E-B k (B k(B kT)- I B k c 0

go to step 3; else go to step 5.

Step 3: Set xk _ (Bk)Tsk and Ak = X(xk).

Step 4: If (xkAk) satisfy the KKT conditions for the linear program (1)

stop; else go to step 5.

Step 15: Set k - k+1, go to step 1.

REMARK 4. Step 2 is not necessary, it serves only to reduce the numbers of

computations of the multiplier function. If the computation of the matrix

(B k(B k)T)- 1 is too expensive we can replace step 2 with

Step 2': If K - iM, with i - 1,2,... , go to step 3; else go to step 5.

where M is a fixed positive number.

COROLLARY 1. Under the assumption a), b) and c) of Theorem 3, Algorithm II

terminates in a finite number of iterations and the produced point xY is the

-22-
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least 2-norm solution of the linear program (1) and Xv is the optimal

solution of its dual.

PROOF. The proof follows by repeating similar arguments of proof of Theorem 3

and by using part c) of Theorem 2 and the properties of the multiplier

function.

ALGORITHM III
Data: (u0,v 0 ) e + n .

Step 0: Set k = 1.

k k k
Step 1: Compute (u ,v ) by applying N iteration of the SOR algorithm to

the problem (12) with £E k and by using (uk-1 ,vk-1) as starting

point.

Step 2: If A is a square nonsingular matrix go to step 3; else go the
IJk

k

step 5;

Step 3: Set zk =(Akk)- b k, wk (AT k  ck

Step 4: If zk ) 0, (A-k z k - bk) ( 0, wk > 0, (A w - C ) 0 stop;
-k ~ kw

I J I 1

else go to step 5.

Step 5: Set k = k+1, go to step I.

COROLLARY 2. U nder the assumption a) and b) of Theorem 4, Algorithm III

terminates in a finite number of iterations and if (z" ,w ) is the produced

point and if (x, ,uV) is defined as follows

V fz if i E C=k if i f I
xi = , UV i

k U-2k0 if i C if i E I

-23-

.A &Anlmlnmii l ~ i i mi



Then xv  is the unique optimal solution of the linear program (1) and uV  is

the optimal solution of its dual.

PROOF. The proof follows from Theorem 4 and from the duality theory for

linear programs (see 11il, pages 45-50).

For brevity's sake, here we do not discuss an interesting algorithm which

is the conjunction of Algorithm I of this paper with the alqorithm proposed in

[6]. In fact such an algorithm would be linearly or superlinearly convergent

under assumptions weaker then those of Theorem 3 and would also have finite

termination under the assumption a) - c) of Theorem 3.
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